1. Mass \leftrightarrow Moles

Moles=Mass (g)Molar Mass (g/mol)

Or rearranged:

 $Moles = Molar Mass(g/mol) \times Mass(g)$

This lets you convert between the amount you weigh on a balance and the number of moles.

2. Moles \leftrightarrow Particles

Number of particles=Moles×6.022×10²³

Or rearranged:

Moles = Number of particles $\div 6.022 \times 10^{23}$

This formula lets you calculate how many atoms, molecules, or ions are in a given sample.

3. Moles ↔ Volume of Gas (at STP)

For gases at **STP** (standard temperature and pressure: 0°C, 1 atm):

Volume (L) = $Moles \times 22.4Lmol$

Or:

Moles = Volume (L22.4Lmol

This is especially useful for gas calculations in reactions.

4. Moles ↔ Volume of Gas (Room Conditions)

At room temperature (around 25 °C) and 1 atm pressure, the molar gas volume is about **24 dm³ (24 L)** instead of 22.4 L.

Moles = Volume $(dm^3) \div 24 dm^3/mol$

This is very common in high school and introductory college chemistry.

5. Moles in Solution (Using Concentration)

$$N = c \times Vn = c \times Vn = c \times V$$

Where:

- nnn = number of moles
- ccc = concentration (mol/dm³)

• VVV = volume of solution (dm³)

If volume is given in cm³, convert to dm³ first by dividing by 1000.

6. Mole Ratios from Balanced Equations

Moles of substance ACoefficient of A = Moles of substance BCoefficient of B

This lets you use the **coefficients from a balanced chemical equation** to relate the amounts of reactants and products.