Question and Answer on Mole Calculations:

Solving this set of questions as an example:

9g of Mg added to 300 cm cube 0.1 mol dm/m³ HCl at room temperature.

- a) Write the balanced equation with state symbols.
- b) Decide the limiting and excess reagent.
- c) Calculate the no. of moles of leftover substance.
- d) Calculate volume of H2 produced at room temperature.
- e) Calculate mass of one H2 molecule.
- f) Calculate mass of MgCl2 produced.
- g) Calculate % yield for 2.3 MgCl2(s) obtained.
- h) Calculate atom economy for MgCl2.
- i) Calculate mass of H2 produced.

Let's solve this step by step using the data given.

Given: 9.00 g Mg added to **300 cm³** (i.e. 0.300 dm³ or 0.300 L) of **0.100 mol·dm⁻³ HCl** at room temperature (use 24.0 L·mol⁻¹ as molar gas volume at RTP). Use Avogadro's number $NA = 6.022 \times 10^{23}$

Atomic/molecular masses used (g·mol⁻¹): Mg = 24.305, H = 1.008, $Cl = 35.453 \rightarrow HCl = 36.461$, $MgCl_2 = 24.305 + 2 \times 35.453 = 95.211$, $H_2 = 2.016$.

a) Balanced equation (with state symbols)

 $Mg(s)+2HCl(aq)\rightarrow MgCl2(aq)+H2(g)$

b) Limiting and excess reagent

1. Moles of Mg:

Moles of Mg = 9.0024.3 = 0.370 mol

2. Moles of HCl:

Mole of $HC1 = cV = 0.100 \times 0.300 = 0.0300 \text{ mol}$

Reaction requires 2 mol HCl per 1 mol Mg \rightarrow required HCl for all Mg = $2 \times 0.370 = 0.741$, but only 0.0300 mol HCl is available.

\rightarrow HCl is limiting; Mg is in excess.

c) Number of moles of leftover substance

Moles HCl available = $0.0300 \text{ mol} \rightarrow \text{this will be entirely consumed.}$

Moles Mg consumed = mole of HC1/2 = 0.0300/2 = 0.01500 mol

Moles Mg leftover = initial - consumed = 0.370294-0.01500=0.35529 mol

nMg (leftover)=0.355 mol

(If you prefer 3 s.f.: 0.355 mol.)

Mass of Mg leftover (optional) = $0.35537 \times 24.3 = 8.64 \text{ g} \approx 8.64 \text{ g}$.

d) Volume of H₂ produced at room temperature

Moles H_2 produced = moles Mg consumed (1:1) = **0.01500 mol**.

Volume:

Volume of $H_2 = 0.01500 \times 24.0 = 0.360 \text{ L} = 360 \text{ cm}^3$

e) Mass of one H2 molecule

Rounded molar mass $H_2 = 2.0 \text{ g} \cdot \text{mol}^{-1}$.

Mass per molecule:

Mass of one H2 = $2.0 \text{ g} \div 6.022 \times 10^{23} = 3.321 \times 10^{-24} \text{ g}$

In kg:

 $3.321 \times 10^{-27} \text{ kg}$

Mass of one H2 $\approx 3.32 \times 10^{-24}$ g (=3.32×10-27 kg)

f) Mass of MgCl₂ produced (theoretical)

Moles $MgCl_2$ formed = moles Mg consumed = **0.01500 mol**.

Rounded molar mass $MgCl_2 = 24.3 + 2(35.5) = 95.3 \text{ g/mol}$

Mass:

Mass of MgCl₂ = $0.01500 \times 95.3 = 1.4295$ g

Rounded (3 s.f.):

Mass of MgCl2, theoretical ≈ 1.43 g

g) % yield if 2.3 g MgCl₂(s) obtained

% yield = actualtheoretical \times 100 = 2.301.4295 \times 100 \approx 160.9%

Rounded:

% yield $\approx 161\%$

(>100% indicates experimental error or impurity — unchanged conclusion.)

h) Atom economy for MgCl2

Atom economy =Mr(desired) $\div \sum Mr(reactants) \times 100\%$

Mr(MgCl2)=95.3

Reactants: Mg $(24.3) + 2 \times HCl (2 \times 36.5 = 73.0) \rightarrow total = 24.3 + 73.0 = 97.324.3 + 73.0 = 97.0 + 73.0 + 73.0 + 73.0 + 73.0 + 73.0 + 73.0 + 73.0 + 73.0 + 73.0 + 73.0 + 73.0 + 73.0 + 73.0 + 7$

Atom economy= $97.3 \div 95.3 \times 100\% = 97.9\%$

i) Mass of H₂ produced

Moles $H_2 = 0.01500$ mol. Molar mass H_2 (rounded) = $2.0 \text{ g} \cdot \text{mol}^{-1}$.

Mass of $H_2 = 0.01500 \times 2.0 = 0.0300 g$

Mass of $H_2 = 0.01500 \times 2.0 = 0.0300 \text{ g}$

Quick results (rounded molar masses)

- Mole of Mg = 0.370 mol
- Mole of HCl=0.0300 mol
- Limiting reagent: **HCl**; Mg in excess $(0.355 \text{ mol left} \approx 8.64 \text{ g})$.
- Volume of H₂=0.360 L
- Mass of one H₂ molecule $\approx 3.32 \times 10^{-24}$ g
- Theoretical MgCl₂ = **1.43** g; actual 2.30 g \rightarrow **161% yield** (experimental error)
- Atom economy \approx **97.9%**
- Mass H₂ produced \approx **0.0300** g