Mole Calculations – Answer Sheet (Worked Solutions)

Given Data:

Mass of Zn = 6.00 g, Molar mass of Zn \approx 65.4 g/mol Volume of HCl = 250 cm³ = 0.250 dm³, Concentration = 0.200 mol/dm³ Molar gas volume = 24.0 dm³/mol, N_2 = 6.022 \times 10²³ mol⁻¹

a) Balanced Equation:

 $Zn(s) + 2HCl(aq) \rightarrow ZnCl_2(aq) + H_2(g)$

b) Limiting Reagent:

Moles $Zn = 6.00 \div 65.4 = 0.0917 \text{ mol}$

Moles $HC1 = c \times V = 0.200 \times 0.250 = 0.0500 \text{ mol}$

Reaction requires 2 mol HCl per 1 mol Zn \rightarrow required HCl for all Zn = 0.183 mol Available HCl = 0.0500 mol \rightarrow HCl is limiting, Zn is in excess.

c) Moles Zn reacted = $0.0500 \div 2 = 0.0250 \text{ mol}$

Moles Zn left = $0.0917 - 0.0250 = 0.0667 \text{ mol } (\approx 4.36 \text{ g left})$

d) Volume H₂ produced:

Moles $H_2 = 0.0250 \text{ mol } (1:1 \text{ ratio with Zn reacted})$

Volume = $0.0250 \times 24.0 = 0.600 \text{ dm}^3 = 600 \text{ cm}^3$

e) Mass of one H₂ molecule:

Molar mass $H_2 = 2.0 \text{ g/mol} \rightarrow \text{mass per molecule} = 2.0 \div (6.022 \times 10^{23}) = 3.32 \times 10^{-24} \text{ g}$

f) Theoretical mass ZnCl₂:

Moles ZnCl $_2$ = 0.0250 mol, M_r (ZnCl $_2$) = 136.3 g/mol Mass = 0.0250 \times 136.3 = 3.41 g

g) Percentage Yield:

(Actual \div Theoretical) \times 100 = (2.70 \div 3.41) \times 100 = 79.2 %

h) Atom Economy:

 $(M_r \text{ desired product} \div \Sigma M_r \text{ reactants}) \times 100$

 $= (136.3 \div [65.4 + (2 \times 36.5)]) \times 100 = (136.3 \div 138.4) \times 100 = 98.5 \%$

i) Mass of H₂ produced:

Moles $H_2 = 0.0250$ mol, $Mass = 0.0250 \times 2.0 = 0.0500$ g